Parabolėkreivė plokštumoje, gaunama kertant kūginį sukimosi paviršių plokštuma, neinančia per jo viršūnę ir lygiagrečia sukimosi ašiai.[1] Jos ekscentricitetas lygus vienetui. Kitaip ji gali būti apibrėžta kaip geometrinė vieta plokštumos taškų, vienodai nutolusių nuo vieno taško (vadinamo parabolės židiniu) ir tiesės (vadinamos direktrise).

Parabolė
Parabolė, kurios židinys yra taškas F, o direktrisė – tiesė L

Parabolės lygtis yra kvadratinė lygtis: , kur , ir yra konstantos, o nelygus .

Sukant parabolę aplink simetrijos ašį, gaunamas erdvinis kūnas - elipsinis paraboloidas.

Galerija

redaguoti

Šaltiniai

redaguoti
  1. parabolė(parengė Rimas Norvaiša). Visuotinė lietuvių enciklopedija (tikrinta 2024-02-03).

Nuorodos

redaguoti