Teiloro polinomo laipsniui didėjant, jis tampa artimesnis aproksimuojamai funkcijai. Ši iliustracija parodo ir Teiloro aproksimacijos grafiką. Teiloro polinomo laipsniai atitinkamai 1, 3, 5, 7, 9, 11 ir 13.

Teiloro eilutė – 1712 m. B. Teiloro aprašyta formulė, pagal kurią polinomu galima aproksimuoti bet kurią tolydžią, realaus ar kompleksinio skaičiaus a aplinkoje be galo diferencijuojamą funkciją.

Formulė:

, kai x pakankamai artimas a.

Čia n! yra n faktorialas, o žymi n - tąją funkcijos f išvestinę taške a.

Kai , eilutė kartais vadinama Makloreno eilute (pagal škotų matematiką Koliną Makloreną).

Bendruoju atveju, Teiloro eilutės nebūtinai konverguoja į funkcijos reikšmę tame taške.


Eksponentė:

.
Pavyzdžiui:

Natūrinis logaritmas:

Pavyzdžiui:


Pavyzdžiui:

Kvadratinė šaknis:

Trigonometrinės funkcijos (x čia reiškiamas radianais):

kur Bn yra n - tasis Bernulio skaičius

Atvirkštinės trigonometrinės funkcijos: