Elektronų konfigūracija
Elektronų konfigūracija – atominėje fizikoje ir kvantinėje chemijoje naudojama sąvoka, reiškianti elektronų išsidėstymą atome, molekulėje arba kitose fizinėse struktūrose, pvz., kristaluose.
Kaip visos elementariosios dalelės, elektronai turi savybių, siejamų tiek su dalelėmis, tiek su bangomis, ir veikia pagal kvantinės mechanikos aprašomus dėsnius.
Kadangi elektronų judėjimą erdvėje sunku apibrėžti, laikoma, kad elektronas yra „niekur“ arba „visur vienu metu“, ir elektrono buvimo vieta apibūdinama kaip galimybė rasti tą elektroną jo judėjimo sudaromame „debesyje“.
Elektronai gali peršokti iš vieno energijos lygio į kitą įgaudami arba atiduodami energijos kvantą (fotonų pavidalu) ir tik tada, kai kitoje atominėje orbitalėje yra jam „vietos“ – remiantis Paulio draudimo principu, kuris riboja elektronų skaičių orbitalėje iki dviejų.
Elektronų konfigūracija atsispindi periodinės lentelės struktūroje, leidžia paaiškinti cheminius ryšius bei kai kurias neįprastas, pvz., lazerių savybes.
Elektronų konfigūracija atomuose
redaguotiKvantiniai skaičiai
redaguotiElektronų būsena yra aprašoma keturiais kvantiniais skaičiais, iš kurių trys yra sveikieji skaičiai ir nusako atominės orbitalės, kurioje elektronas yra, savybes.
Pavadinimas | Žymėjimas | Galimos reikšmės | Apibūdina |
---|---|---|---|
pagrindinis kvantinis skaičius | n | sveikasis sk., 1 ar daugiau | iš dalies bendrą orbitalės energiją, bendrą atstumą nuo atomo branduolio |
orbitinis kvantinis skaičius | l | sveikasis sk., nuo 0 iki n-1 | orbitalės judesio kiekio momentą, „formą“, elektronų trajektorijų susikirtimų skaičių |
magnetinis kvantinis skaičius | m | sveikas sk., | atominės orbitalės energijos pokytį dėl išorinio magnetinio lauko veikimo, erdvinę padėtį, elektrono skriejimo aplink orbitą kryptį |
sukinio magnetinis kvantinis skaičius | ms | +½ arba -½ | elektrono „sukimąsi apie savo ašį“, o tiksliau sukinį |
Pagal Paulio draudimo principą, viename atome esantys elektronai negali turėti vienodo kvantinių skaičių rinkinio.
Sluoksniai ir pasluoksniai
redaguotiSluoksniai ir pasluoksniai (dar vadinami lygmenimis ir polygmenimis) yra apibrėžiami kvantiniais skaičiais, o NE elektronų nuotoliu nuo branduolio. Dideliuose atomuose sluoksniai virš antrojo sluoksnio persikloja (žiūrėti Pildymo principas).
Būsenos su vienoda n verte yra susijusios ir laikomos esančiomis tame pačiame elektronų sluoksnyje.
Būsenos su vienodomis n ir l vertėmis yra laikomos esančiomis tame pačiame elektronų pasluoksnyje, o elektronai vadinami ekvivalentiniais elektronais.
Jeigu būsenos turi dar ir vienodą m vertę, sakoma, kad jos yra toje pačioje atominėje orbitalėje.
Kadangi elektronai turi tik dvi galimas sukinio būsenas, atominėje orbitalėje negali būti daugiau nei du elektronai (Paulio draudimo principas).
Pasluoksnyje gali būti iki elektronų; sluoksnyje gali būti elektronų.
Pavyzdys
redaguotiElektronų konfigūracija užpildytam penktajam sluoksniui:
Sluoksnis | Pasluoksnis | Orbitalės | Elektronai | |
---|---|---|---|---|
n = 5 | l = 0 | m = 0 | → 1 tipo s orbitalė | → daugiausiai 2 elektronai |
l = 1 | m = -1, 0, +1 | → 3 tipo p orbitalės | → daugiausiai 6 elektronai | |
l = 2 | m = -2, -1, 0, +1, +2 | → 5 tipo d orbitalės | → daugiausiai 10 elektronų | |
l = 3 | m = -3, -2, -1, 0, +1, +2, +3 | → 7 tipo f orbitalės | → daugiausiai 14 elektronų | |
l = 4 | m = -4, -3 -2, -1, 0, +1, +2, +3, +4 | → 9 tipo g orbitalės | → daugiausiai 18 elektronų | |
Iš viso: daugiausiai 50 elektronų |
Ši informacija gali būti užrašyta kaip 5s² 5p6 5d10 5f14 5g18 (daugiau informacijos apie žymėjimą pateikta žemiau).
Žymėjimas
redaguotiFizikai ir chemikai naudoja standartinį žymėjimą aprašyti atomų elektronų konfigūracijoms. Šiame žymėjime, pasluoksnis yra aprašomas forma nxy, kur n yra sluoksnio numeris, x yra orbitalės tipas, o y yra elektronų skaičius pasluoksnyje. Atomo pasluoksniai yra surašomi energijos didėjimo tvarka – t. y., tvarka, kuria jie yra užpildomi (žiūrėti pildymo principą žemiau).
Pavyzdžiui, vandenilis pagrindinėje būsenoje turi vieną elektroną pirmojo sluoksnio s orbitalėje, vadinasi jo konfigūracija rašoma 1s1. Litis turi du elektronus 1s pasluoksnyje ir vieną (didesnės energijos) 2s pasluoksnyje, todėl jo pagrindinės būsenos konfigūracija užašoma 1s² 2s1. Fosforas (atomo numeris 15), užrašomas taip: 1s² 2s² 2p6 3s² 3p³.
Atomams su daug elektronų toks žymėjimas tampa gan ilgas. Todėl jis yra dažnai sutrumpinamas atsižvelgiant į tai, kad pirmieji pasluoksniai sutampa su vienų ar kitų inertinių dujų konfigūracija. Pavyzdžiui, fosforas skiriasi nuo neono (1s² 2s² 2p6) tik trečiuoju sluoksniu. Todėl galima neono elektronų konfigūracijos nebekartoti ir fosforą užrašyti taip: [Ne]3s² 3p³.
Dar paprastesni būdas yra paprasčiausiai užrašyti kiekvieno sluoksnio elektronų skaičių, pavyzdžiui, (vėl fosforui), 2-8-5.
Orbitalių žymėjimai s, p, d, ir f yra kilę iš naudotos spektrinių linijų kategorizavimo sistemos, kuri linijas skirstė į sharp (ryškias), principal (pagrindines), diffuse (išsisklaidžiusias) ir fundamental (fundamentalias), remiantis stebima jų struktūra. Aprašant pirmuosius keturis orbitalių tipus, jie buvo susieti su šiais spektrinių linijų tipais ir daugiau pavadinimų nebebuvo. Žymėjimas g buvo pasirinktas sekant abėcėline tvarka (po f). Sluoksniai su daugiau nei penkiais pasluoksniais yra teoriškai įmanomi, bet visiems atrastiems elementams užtenka ir penkių.
Pildymo principas
redaguotiAtomų pagrindinėje būsenoje elektronų konfigūracija paprastai paklūsta pildymo principui. Pagal šį principą, elektronai užpildo būsenas didėjančios energijos tvarka; t. y., pirmasis elektronas užima mažiausios energijos būseną, antrasis – antrą pagal mažumą ir taip toliau. Būsenų pildymo tvarka:
1 | 1 | ||||
---|---|---|---|---|---|
2 | 2 | 3 | |||
3 | 4 | 5 | 7 | ||
4 | 6 | 8 | 10 | 13 | |
5 | 9 | 11 | 14 | 17 | 21 |
6 | 12 | 15 | 18 | 22 | |
7 | 16 | 19 | 23 | ||
8 | 20 | 24 |
Pasluoksnių energijos didėjimo tvarka yra randama sekant šios lentelės žemyn – kairėn diagonalėmis, pradedant aukščiausia diagonale ir judant žemyn. Pirmoji (aukščiausia) diagonalė eina per 1s; antroji per 2s; trečioji per 2p ir 3s; ketvirtoji per 3p ir 4s; penktoji per 3d, 4p ir 5s; ir taip toliau. Bendru atveju, po ne „s“ pasluoksnių visada eina „žemesnis“ kito sluoksnio pasluoksnis; pavyzdžiui, po 2p eina 3s; po 3d eina 4p, po kurio eina 5s, po 4f eina 5d, po kurio eina 6p, o tada 7s.
Elektronų su vienodais sukiniais pora turi truputį mažesnę energiją nei skirtingų sukinių elektronų pora. Kadangi du elektronai toje pačioje orbitalėje privalo turėti skirtingus sukinius, jie greičiau pildo skirtingas orbitales. Tai pasireiškia per pasluoksnių, kurių (turinčių daugiau nei vieną orbitalę), nepilną orbitalių užpildymą. Pavyzdžiui, jeigu p pasluoksnis turi keturis elektronus, du iš jų bus priversti užimti vieną orbitalę, bet kiti du elektronai užims abi likusias orbitales, o jų sukiniai bus lygūs. Šis reiškinys yra vadinamas Hundo taisykle.
Modifikuotas pildymo principas gali būti pritaikytas protonams ir neutronams atomo branduolyje (žiūrėti branduolinės fizikos sluoksnių modelį).
3d, 4d, 5d ir išimtys
redaguotid pasluoksnis užpildytas pilnai arba iki pusės (t. y. 5 arba 10 elektronų) yra stabilesnis už kito sluoksnio s pasluoksnį, nes elektronui pusiau užpildytame d pasluoksnyje reikia mažiau energijos nei užpildytame s pasluoksnyje. Pavyzdžiui, vario (atomo numeris 29) konfigūracija yra [Ar]4s1 3d10, o ne [Ar]4s² 3d9, kaip turėtų būti pagal pildymo principą. Panašiai, chromo (atomo numeris 24) konfigūracija yra [Ar]4s1 3d5, o ne [Ar]4s² 3d4.
Elementas | Z | Elektronų konfigūracija | Sutrumpinta elektronų konf. |
---|---|---|---|
Skandis | 21 | 1s² 2s² 2p6 3s² 3p6 4s² 3d1 | [Ar] 4s² 3d1 |
Titanas | 22 | 1s² 2s² 2p6 3s² 3p6 4s² 3d² | [Ar] 4s² 3d² |
Vanadis | 23 | 1s² 2s² 2p6 3s² 3p6 4s² 3d³ | [Ar] 4s² 3d³ |
Chromas | 24 | 1s² 2s² 2p6 3s² 3p6 4s1 3d5 | [Ar] 4s1 3d5 |
Manganas | 25 | 1s² 2s² 2p6 3s² 3p6 4s² 3d5 | [Ar] 4s² 3d5 |
Geležis | 26 | 1s² 2s² 2p6 3s² 3p6 4s² 3d6 | [Ar] 4s² 3d6 |
Kobaltas | 27 | 1s² 2s² 2p6 3s² 3p6 4s² 3d7 | [Ar] 4s² 3d7 |
Nikelis | 28 | 1s² 2s² 2p6 3s² 3p6 4s² 3d8 | [Ar] 4s² 3d8 |
Varis | 29 | 1s² 2s² 2p6 3s² 3p6 4s1 3d10 | [Ar] 4s1 3d10 |
Cinkas | 30 | 1s² 2s² 2p6 3s² 3p6 4s² 3d10 | [Ar] 4s² 3d10 |
Galis | 31 | 1s² 2s² 2p6 3s² 3p6 3d10 4s² 4p1 | [Ar] 3d10 4s² 4p1 |
5 periodas turi daugiau išimčių:
Elementas | Z | Elektronų konfigūracija | Sutrumpinta elektronų konf. |
---|---|---|---|
Itris | 39 | 1s² 2s² 2p6 3s² 3p6 4s² 3d10 4p6 5s² 4d1 | [Kr] 5s² 4d1 |
Cirkonis | 40 | 1s² 2s² 2p6 3s² 3p6 4s² 3d10 4p6 5s² 4d² | [Kr] 5s² 4d² |
Niobis | 41 | 1s² 2s² 2p6 3s² 3p6 4s² 3d10 4p6 5s1 4d4 | [Kr] 5s1 4d4 |
Molibdenas | 42 | 1s² 2s² 2p6 3s² 3p6 4s² 3d10 4p6 5s1 4d5 | [Kr] 5s1 4d5 |
Technecis | 43 | 1s² 2s² 2p6 3s² 3p6 4s² 3d10 4p6 5s² 4d5 | [Kr] 5s² 4d5 |
Rutenis | 44 | 1s² 2s² 2p6 3s² 3p6 4s² 3d10 4p6 5s1 4d7 | [Kr] 5s1 4d7 |
Rodis | 45 | 1s² 2s² 2p6 3s² 3p6 4s² 3d10 4p6 5s1 4d8 | [Kr] 5s1 4d8 |
Paladis | 46 | 1s² 2s² 2p6 3s² 3p6 4s² 3d10 4p6 4d10 | [Kr] 4d10 |
Sidabras | 47 | 1s² 2s² 2p6 3s² 3p6 4s² 3d10 4p6 5s1 4d10 | [Kr] 5s1 4d10 |
Kadmis | 48 | 1s² 2s² 2p6 3s² 3p6 4s² 3d10 4p6 5s² 4d10 | [Kr] 5s² 4d10 |
Indis | 49 | 1s² 2s² 2p6 3s² 3p6 4s² 3d10 4p6 5s² 4d10 5p1 | [Kr] 5s² 4d10 5p1 |
Pavyzdžiui, Itrio elektronų konfiguracija galima paaiškinti taip. Itris turi 39 protonus ir 39 elektronus. Ši eilutė 1s² 2s² 2p6 3s² 3p6 4s² 3d10 4p6 5s² 4d1 reiškia elektronų konfiguraciją, kur laipsnyje esantis skaičiai reiškia elektronų skaičių apvalkalose arba orbitose, o kiekvienoje orbitoje gali būti ne daugiau dviejų elektronų. Paprastai paskutinėje orbitoje buna arba vienas arba du elektronai, o visose vidinėse orbitose būna po 2 elektronus. Raidės s, p, d, f reiškia apvalkalų skaičių arba orbitų skaičių, kurį turi viena iš šių raidžių. Raidė s turi 1 orbitą į kurią gali tilpti daugiausiai 2 elektronai; raidė p turi 3 orbitas į kurias gali tilpti 6 elektronai, nes į kiekvieną orbitą po 2 elektronus; raidė d turi penkias orbitas į kurias gali tilpti daugiausiai (ir įprastai telpa) 10 elektronų; raidė f turi 7 orbitas į kurias telpa 14 elektronų, bet f raidė retai pasitaiko. Kiekviena raidė s, p, d, f atitinka kvantinį skaičių l. Koeficientai priekyje raidžiu yra kvantinis skaičius n. Orbitų skaičius, kurį turi viena raidė (s, p, d, f), yra kvantinis skaičius m, kuris, pavyzdžiui, kai gali būti ir ir , taigi, iš viso penkios orbitos. Kadangi šios orbitos yra simetriškos ir panašios jos suvedamos į vieną raidę. Taigi Itrio n kvantinio skaičiaus seka yra: 1, 2, 2, 3, 3, 4, 3, 4, 5, 4; l kvantinio skaičiaus seka yra tokia: 0, 0, 1, 0, 1, 0, 2, 1, 0, 2; m kvantinio skaičiaus seka yra: 0, 0, [-1, 0, 1], 0, [-1, 0, 1], 0, [-2, -1, 0, 1, 2], [-1, 0, 1], 0, [-2, -1, 0, 1, 2]; panašių orbitų kiekvienoje raidėje: 1, 1, 3, 1, 3, 1, 5, 3, 1, 5.
Elementas | Z | Sutrumpinta elektronų konf. |
---|---|---|
Iridis | 77 | [Xe] 6s² 4f14 5d7 |
Platina | 78 | [Xe] 6s1 4f14 5d9 |
Auksas | 79 | [Xe] 6s1 4f14 5d10 |
Gyvsidabris | 80 | [Xe] 6s² 4f14 5d10 |
Talis | 81 | [Xe] 6s² 4f14 5d10 6p1 |
Sąryšis su periodinės elementų lentelės struktūra
redaguotiElektronų konfigūracija yra susijusi su periodinės lentelės struktūra. Cheminės atomo savybės priklauso nuo elektronų išsidėstymo jo tolimiausiame („valentiniame“) sluoksnyje (nors atomui didėjant chemines savybes ima daryti įtaką ir atomo spindulys, jo masė bei papildomos elektroninės būsenos).
Elektronų konfigūracija kietame kūne
redaguotiKietame kūne yra labai daug elektronų būsenų. Todėl iš diskrečių būsenų gaunasi tolydžios galimų būsenų sritys (elektroninės juostos). Todėl kietame kūne vietoj elektronų konfigūracijos naudojama juostų teorija.
Taip pat skaitykite
redaguotiNuorodos
redaguoti- http://www.humboldt.edu/~chem_dpt/resources/C109_AOSup.htm Archyvuota kopija 2008-03-20 iš Wayback Machine projekto.
- http://www.chem.queensu.ca/people/faculty/mombourquette/FirstYrChem/Molecular/orbitals/index.htm Archyvuota kopija 2008-03-19 iš Wayback Machine projekto.
- http://www.hi.is/~hj/QuantumMechanics/orbitals.gif
- http://www.winter.group.shef.ac.uk/orbitron/AOs/3d/index.html