Lagranžo vidutinės reikšmės teorema
![]() |
Šiam straipsniui ar jo daliai trūksta išnašų į šaltinius. Jūs galite padėti Vikipedijai pridėdami tinkamas išnašas su šaltiniais. |
Lagranžo vidutinės reikšmės teorema – viena iš integralinio ir diferencialinio skaičiavimo teoremų.
Tegul funkcija tenkina tokias sąlygas:
- tolydi intervale
- diferencijuojama intervale
tada:
Ši lygybė vadinama Lagranžo vidutinės reikšmės teorema. Apibendrinta vidutinės reikšmės formulė vadinama Koši vidutinės reikšmės formule. Lagranžo teorema yra atskiras Koši teoremos atvejis, tačiau dažniausiai jo pakanka.
Geometrinė teoremos prasmė redaguoti
Geometriškai teorema reiškia, kad kiekvienai tolydžiai funkcijai intervale (a; b) egzistuoja bent vienas intervalo (a; b) taškas toks, kad funkcijos liestinė šiame taške yra lygiagreti atkarpai, jungiančiai funkcijos galus. Tokių taškų gali būti be galo daug.