Vektorinė sandauga

 NoFonti.svg  Šiam straipsniui ar jo daliai trūksta išnašų į šaltinius.
Jūs galite padėti Vikipedijai pridėdami tinkamas išnašas su šaltiniais.

Vektorinė sandauga (angl. cross product) – dvinarė vektorių operacija.

Dviejų vektorių vektorinė sandauga dešiniosios rankos koordinačių sistemoje

ApibrėžimasKeisti

Dviejų vektorių a ir b vektorinė sandauga yra vektorius c, tenkinantis sąlygas:

  1.   ir  , t.y vektorius c yra statmenas vektorių a ir b plokštumai;
  2. Vektoriaus c ilgis yra lygus lygiagretainio, kurio dvi gretimos kraštinės sutampa su vektoriais a ir b, plotui, t.y  ;
  3. Vektorius c nukreiptas taip, kad žiūrint iš jo galo, atrodytų, jog vektorius a, pasuktas mažiausiu kampu θ prieš laikrodžio rodyklės sukimosi kryptį, sutampa su vektoriaus b kryptimi.

Vektorinė sandauga yra žymima   arba c = [a, b].

 
Dešiniosis rankos taisyklės taikymas vektoriaus c krypčiai nustatyti

Dažnai sakoma, kad vektoriai a, b ir c, tenkinantys trečiąją sąlygą sudaro dešininį trejetą (sistemą). Dešininę sistemą galima pavaizduoti dešiniosios rankos pirštais: smilių nukreipus vektoriaus a kryptimi, o didijį pirštą - vektoriaus b kryptimi, nykštys rodys vektoriaus c kryptį (žr. paveiksliuką).

Vektorinės sandaugos apskaičiavimasKeisti

Erdvinėje koordinačių sistemoje abscisių, ordinačių ir aplikačių ašių ortai i, j ir k tenkina šias lygybes:

 
 
 

Naudojant šias lygybes galime apskaičiuoti vektorinę sandaugą, kai yra žinomos tu vektorių koordinates. Jeigu   ir  , tai vektorinę sandaugą patogu skaičiuoti naudojant trečios eilės determinantą

 

SavybėsKeisti

Bet kurių nenulinių vektorių vektoriniai sandaugai būdingos šios savybės:

  1. Antikomutatyvumas, t.y  ;
  2. Asociatyvumas daugybos iš skaliaro atžvilgiu. t.y  
  3. Distributivumas vektorių sudėties atžvilgiu, t.y  
  4. Vektorinė sandauga yra lygi nuliniam vektoriui tada ir tik tada, kai vektoriai a ir b yra kolinearūs, t.y   kai a || b
  5. Tenkina Jacobi tapatybę, t.y  

TaikymaiKeisti

Vektorinė sandauga yra taikoma norint apskaičiuoti lygiagretainio arba trikampio, kurio dvi gretimos kraštinės sutampa su vektoriais a ir b, plotą. Tą galima padaryti naudojant formules:

 
 

Taip pat galima apskaičiuoti aukštinės ha, nuleistos į pagrindą a, ilgį. Formulė vienoda ir lygiagretainiui ir trikampiui ir atrodo taip:

 

Vektorinė sandauga yra taikoma ne tik geometrijoje, tačiau ir algebroje. Tokio taikymo pavyzdys yra kvaternijonų daugyba.


Veiksmai su vektoriais

 

Sudėtis ir atimtis  | Vektorinė sandauga | Skaliarinė sandauga | Mišrioji sandauga |