Trikampio nelygybė
![]() |
Šiam straipsniui ar jo daliai trūksta išnašų į šaltinius. Jūs galite padėti Vikipedijai pridėdami tinkamas išnašas su šaltiniais. |
Trikampio nelygybė teigia, kad bet kokio trikampio bet kurių dviejų kraštinių ilgių suma yra nemažesnė už trečios kraštinės ilgį. Euklido geometrijoje ir kai kuriose kitose geometrijose tai yra teorema. Euklido geometrijoje dviejų kraštinių ilgių suma yra lygi trečiosios kraštinės ilgiui tada ir tik tada, kai trikampis turi vieną 180° kampą ir du 0° kampus, kaip parodyta apatiniame dešinėje esančio paveikslėlio pavyzdyje.
Normuotoje vektorinėje erdvėje V, trikampio nelygybė yra
t. y. dviejų vektorių sumos norma yra nedidesnė už tų pačių dviejų vektorių normų sumą.
Realiųjų skaičių tiesė yra normuota vektorių erdvė, kurioje norma yra modulis. Taigi, tirkampio nelygybė teigia, kad bet kuriems realiesiems skaičiams x ir y galioja nelygybė
Iš atvirkštinės trikampio nelygybės išeina, kad bet kuriems realiesiems skaičiams x ir y galioja ir nelygybė