Trapecija

Trapecija vadinamas keturkampis, kurio dvi priešingosios kraštinės lygiagrečios, o kitos dvi kraštinės nelygiagrečios.
Tas lygiagrečias kraštines vadiname trapecijos pagrindais, kitas dvi kraštines vadiname šoninėmis kraštinėmis. 1 pav. pavaizduotos trapecijos kraštinės BC ir AD – trapecijos pagrindai, AB ir CD – trapecijos šoninės kraštinės. Iš taškų B ir C nuleisti statmenys BK ir CL vadinami trapecijos aukštine. Atkarpą, kuri jungia šoninių kraštinių vidurio taškus, vadiname trapecijos vidurio linija. 1 pav. pavaizduotos trapecijos vidurio linija yra EF.

1 pav. Įvairiakraštė trapecija

Trapecijų rūšysKeisti

Lygiašonė trapecijaKeisti

 
2 pav. Lygiašonė trapecija

Trapecija, kurios šoninės kraštinės lygios, vadinama lygiašonė. 2 pav. pavaizduota trapecija ABCD yra lygiašonė, nes AB=CD. Lygiašonės trapecijos kampai prie kiekvieno iš pagrindų yra lygūs:  

  laipsnių.   laipsnių.

Stačioji trapecijaKeisti

Trapecija, kurios viena šoninė kraštinė statmena pagrindui, vadinama stačiąja. 3 pav. pavaizduota stačioji trapecija ABCD, kurios  

 
3 pav. Stačioji trapecija

Trapecijos savybėsKeisti

  • Keturkampis yra trapecija tada ir tik tada, jei yra bent viena pora greta esančių kampų, kurių suma lygi 180°.
  • Kita būtina ir pakankama sąlyga yra jog įstrižainės dalija viena kitą tuo pačiu santykiu. Šis santykis toks pats kaip ir tarp pagrindų ilgių.
  • Linija, išvesta per šoninių kraštinių vidurio taškus (vidurinė linija), yra lygiagreti pagrindams. Jos ilgis yra pagrindų ilgių aritmetinis vidurkis.

Trapecijos elementų žymėjimasKeisti

4 pav. pavaizduoti visi pagrindiniai trapecijos elementai. AB=b, DC=a – trapecijos ABCD pagrindai; DA=d, BC=c – trapecijos šoninės kraštinės; GH=m – trapecijos vidurio linija; EF – atkarpa, einanti per įstrižainių susikirtimo tašką ir lygiagreti pagrindams; AK=h – aukštinė; BD= ,AC=  – trapecijos įstrižainės; φ – kampas tarp įstrižainių.

 
4 pav. Trapecijos elementai

Trapecijos vidurio linija, perimetras, plotasKeisti

Pastaba: Visos žemiau pateiktos formulės remiasi 4 pav. žymėjimais (žr. Trapecijos elementų žymėjimas).
Trapecijos vidurinė linija lygiagreti pagrindams ir lygi jų sumos pusei:

 ,  ;  

Trapecijos įstrižainių radimas:

 ;  

Atkarpos lygiagrečios pagrindams ir einančios per įstrižainių susikirtimo tašką radimas:

 

Trapecijos perimetras ir pusperimetris:

 ;  

Trapecijos plotas lygus vidurinės linijos ir aukštinės sandaugai:

 ,

Trapecijos plotas lygus jos pagrindų sumos pusei ir aukštinės sandaugai.

 ,

čia a ir b – lygiagrečių kraštinių ilgiai, h – aukštinė. Kitaip tariant (žr. savybes) jis lygus vidurinės linijos ir aukštinės ilgių sandaugai.

Jei aukštinė nežinoma, tačiau žinomi visų kraštinių ilgiai, trapecijos plotą galima rasti pagal formulę

 

čia a, b – lygiagrečių kraštinių ilgiai, c, d – kitų dviejų kraštinių ilgiai.

Trapecijos plotas lygus jos įstrižainių ir sinuso kampo tarp jų pusei: