Vektorius: Skirtumas tarp puslapio versijų

1 859 pridėti baitai ,  prieš 11 metų
:Iš [[trikampis|kosinusų teoremos]] žinant atstumą tarp taško a=(2; 3; 4) ir taško b=(5; 6; 7) galima patikrinti ar kampas <math>\phi</math> surastas teisingai. Atstumas tarp taško a ir taško b yra lygus <math>f=\sqrt{(5-2)^2+(6-3)^2+(7-4)^2}=\sqrt{3^2+3^2+3^2}=\sqrt{9+9+9}=\sqrt{27}=5.196152423</math>.
Iš kosinusų teoremos <math>f^2=a^2+b^2-2ab\cos\phi</math>, čia <math>a=\sqrt{29}</math> ir <math>b=\sqrt{110}</math> yra vektorių '''a''' ir '''b''' ilgiai. Taigi <math>2ab\cos\phi=a^2+b^2-f^2</math>, toliau <math>\cos\phi={a^2+b^2-f^2\over 2ab}={(\sqrt{29})^2+(\sqrt{110})^2-(\sqrt{27})^2\over 2\sqrt{29}\cdot\sqrt{110}}={29+110-27\over 2\sqrt{3190}}={56\over \sqrt{3190}}=0.991499924</math>.
 
:Pavyzdis dvimatėje erdvėje su vektoriais a=(3; 4), b=(6; 8) sprendžiamas analogiškai. Vektorių skaliarinė sandauga lygi <math>\mathbf{a}\cdot \mathbf{b}=3\cdot 6+4\cdot 8=50</math>. Vektorių ilgiai yra <math>||a||=\sqrt{3^2+4^2}=\sqrt{25}=5</math> ir <math>||b||=\sqrt{6^2+8^2}=\sqrt{100}=10</math>. Tuomet <math>\cos\phi=\frac{\mathbf{a} \cdot \mathbf{b}}{\left\|\mathbf{a}\right\|\cdot \left\|\mathbf{b}\right\|}={50\over 5\cdot 10}=1</math>. Gavosi, kad <math>\phi=\arccos 1 =0</math> radianų bei laipsnių.
:Sprendžiant taikant kosinusų teoremą, randamas ilgis atkarpos f tarp taškų a ir b, taigi <math>f=\sqrt{(6-3)^2+(8-4)^2}=\sqrt{25}=5</math>. Toliau <math>\cos\phi={a^2+b^2-f^2\over 2ab}={5^2+10^2-5^2\over 2\cdot 5\cdot 10}={100\over 100}=1</math>. Išvada jog vektorių linijos šįsyk sutampa ir vektorius '''b''' yra 2 kartus ilgesnis už vektorių '''a'''.
 
:Pavyzdis, kai duoti vektoriai a=(3; 4), b=(6; 20). Vektorių skaliarinė sandauga lygi <math>\mathbf{a}\cdot \mathbf{b}=3\cdot 6+4\cdot 20=98</math>. Vektorių ilgiai yra <math>||a||=\sqrt{3^2+4^2}=\sqrt{25}=5</math> ir <math>||b||=\sqrt{6^2+20^2}=\sqrt{436}\approx 20,88061302</math>. Tuomet <math>\cos\phi=\frac{\mathbf{a} \cdot \mathbf{b}}{\left\|\mathbf{a}\right\|\cdot \left\|\mathbf{b}\right\|}={98\over 5\cdot \sqrt{436}}=0,938669759</math>. Gavosi, kad <math>\phi=\arccos {98\over 5\cdot \sqrt{436}} =0.352044314</math> arba 20,17065341 laipsnių.
:Sprendžiant taikant kosinusų teoremą, randamas ilgis atkarpos f tarp taškų a ir b, taigi <math>f=\sqrt{(6-3)^2+(20-4)^2}=\sqrt{265}=16,2788206</math>. Toliau <math>\cos\phi={a^2+b^2-f^2\over 2ab}={5^2+(\sqrt{436})^2-(\sqrt{265})^2\over 2\cdot 5\cdot \sqrt{436}}={25+436-265\over 10\sqrt{436}}={196\over \sqrt{43600}}=0.938669759</math>. Tada <math>\phi=\arccos {196\over \sqrt{43600}}=0.352044314</math>.
 
== Vektorinė vektorių sandauga ==
Anoniminis naudotojas