Polius (kompleksinė analizė)
![]() |
Šiam straipsniui ar jo daliai trūksta išnašų į šaltinius. Jūs galite padėti Vikipedijai pridėdami tinkamas išnašas su šaltiniais. |
Polius kompleksinėje analizėje – kompleksinio kintamojo funkcijos izoliuotas ypatingas taškas (tai yra taškas, kuriame ji elgiasi kaip ir funkcija prie z = 0) , kuriame .

Gama funkcijos modulis. Kairėje, (Re z<0) funkcija turi be galo daug polių. Dešinėje (Re z>0) polių nėra, nors funkcija greitai didėja.
Poliaus kriterijaiKeisti
- Taškas yra polius tik tada, kai funkcijos skleidinys Lorano eilute taško aplinkoje (išskyrus patį tašką ) turi baigtinį skaičių narių su neigiamu laipsniu:
,
čia – reguliarioji Lorano eilutės dalis (tik nariai su neneigiamais laipsniais). Jei , tuomet taškas vadinamas eilės poliumi. Jei , jį vadiname pirmos eilės poliumi.
- Taškas yra eilės polius tik tuomet, kai , bet
- Taškas yra eilės polius tik tada, kai jis yra funkcijos eilės nulis.
PavyzdžiaiKeisti
- Funkcija
- turi pirmos eilės polių taške .
- Funkcija
- turi antros eilės polių taške ir trečios eilės polių taške .
- Funkcija
- turi pirmos eilės polius taškuose
- Funkcija
- turi pirmos eilės polių begalybėje.