Atverti pagrindinį meniu

Kompleksinis skaičius

(Nukreipta iš puslapio Kompleksiniai skaičiai)
Kompleksinis skaičius gali būti vaizduojamas kaip skaičių a ir b pora, kuri sudaro vektorių kompleksinėje plokštumoje „Re“ – realioji ašis, „Im“ – menamoji ašis, o i yra menamasis vienetas.

Kompleksinis skaičius yra dviejų realiųjų skaičių pora z:

,

kur a ir b – realieji skaičiai, o  – menamasis vienetas tenkinantis sąlygą:

Dažnai daroma klaida, kai sakoma, jog . Tokio teiginio naudoti negalima (plačiau apie tai skaitykite straipsnyje apie menamąjį vienetą).

Skaičius a vadinamas realiąja z dalimi, žymima a = Re(z), skaičius b vadinamas menamąja z dalimi, žymima b = Im(z).

Kompleksinių skaičių aibė žymima C:

Turinys

Aritmetinės operacijos su kompleksiniais skaičiaisKeisti

Sudėtis

 

Atimtis

 ,

Daugyba

 
  •  
  •  

Dalyba

 
  •  .
  •  .

Kompleksinių skaičių laukasKeisti

Formaliai kompleksinis skaičius gali būti apibrėžtas kaip išrikiuota dviejų realių skaičių (a, b) pora su įvestomis operacijomis:

 
 

Taip apibrėžti kompleksiniai skaičiai sudaro lauką, kompleksinių skaičių lauką, žymimą C (laukas matematikoje yra algebrinė struktūra, kurioje apibrėžtos sudėties, atimties, daugybos ir dalybos operacijos, turinčios tam tikras algebrines savybes. Pvz., realieji skaičiai yra laukas).

Realusis skaičius a yra sutapatinamas su kompleksiniu skaičiumi (a, 0), ir tuo būdu realiųjų skaičių laukas R tampa C dalimi. Menamasis vienetas i apibrėžiamas kaip kompleksinis skaičius (0, 1), kuris tenkina:

 

Lauke C mes turime:

  • vienetinį elementą sudėčiai („nulį“): (0, 0)
  • vienetinį elementą daugybai („vienetą“): (1, 0)
  • atvirkštinį elementą sudėties operacijai (a,b): (−a, −b)
  • atvirkštinį elementą sandaugos operacijai nenuliniam (a, b):  

Kompleksinių skaičių plokštumaKeisti

Kiekvienam kompleksiniam skaičiui z = a + bi galima vienareikšmiškai priskirti plokštumos, kurioje yra Dekarto koordinačių sistema, tašką (a; b). Pagrindiniai kompleksinių skaičių veiksmai gali būti interpretuojami geometriškai: kompleksiniai skaičiai a + ib ir c + id gali būti sumuojami kaip dvimačiai vektoriai (a; b) ir (c; d).

Trigonometrinė formaKeisti

 
Kompleksiniai skaičiai trigonometrijoje.

Greta algebrinės formos ( ) dar yra trigonometrinė kompleksinių skaičių užrašymo forma:

 ,

Čia

 ,11
 
 .

Formulė kai   yra vadinama Oilerio formule:  .

Šiuo atveju kompleksinis skaičius   turi paprastą geometrinę interpretaciją. a yra atkarpos ilgis x ašimi, o b – y ašimi. Kampas   yra kampas tarp x ašies ir tiesės jungiančios koordinačių pradžią (0,0) ir tašką (a, b).   yra atkarpos ilgis nuo koordinačių pradžios (0, 0) iki taško (a, b).


Daugyba, dalyba, kėlimas laipsniu ir šaknies traukimo operacijos trigonometrinėje formojeKeisti

Dviejų kompleksinių skaičių daugyba atrodys taip:

 

dalyba:

 

Kėlimui laipsniu yra naudojama Muavro formulė:

 

Šaknies traukimo operacija:

 ,   – egzistuoja lygiai n skirtingų šaknų. Kai k kinta nuo 0 iki (n-1) visos gaunamos reikšmės yra skirtingos. Kai k > n, gaunamos reikšmės kartojasi.