Diferencialas

 NoFonti.svg  Šiam straipsniui ar jo daliai trūksta išnašų į šaltinius.
Jūs galite padėti Vikipedijai pridėdami tinkamas išnašas su šaltiniais.

Diferencialas – funkcijos pokyčio tiesinė pagrindinė dalis. Funkcija y = f(x), apibrėžta intervale (a, b), vadinama diferencijuojama taške x (a, b), jei jos pokytį Δy = f(x + Δx) – f(x) galima išreikšti dviejų dėmenų suma: Δy = AΔx + o(Δx); čia A – skaičius, nepriklausantis nuo Δx.

Funkcija (žalia kreivė) ir jos diferencialas taške P (mėlyna tiesė)

Pavyzdžiui, yra funkcija f(x)=x². Tos funkcijos išvestinė yra

Įstatykime vietoje x kokią nors reikšmę, pavyzdžiui, x=3.

Δy = AΔx + o(Δx) = 2xΔx + (Δx)²=6Δx + (Δx)²,

čia A = 2x = 6 = f'(x); (Δx)² = o(Δx).

Taigi funkcijos pokytis yra Δy = f(x + Δx) – f(x) = AΔx + o(Δx), o diferencialas dy = AΔx = y'Δx = y’dx = f'(x)dx; Δx = dx.

Diferencijuojamumui būtina sąlyga yra funkcijos tolydumas. Tačiau ne visos tolydžios funkcijos yra diferencijuojamos. Kaip vienas iš tokių nediferencijuojamų funkcijų pavyzdžių yra Vejerštraso funkcija.

Taip pat skaitykiteKeisti